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Overview

This deck of slides goes over the binary-choice model and estimation
by maximum likelihood.

The relevant chapter in Hansen is 25.

H25.7 and H25.8 concern asymptotics which we will deal with later.
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Bernoulli outcomes

Conditional on covariates X, Bernoulli variable Y ∈ {0, 1} have success
probability

P(Y = 1|X) = E(Y |X).

This CEF is bounded between zero and one and so is nonlinear, in
general.

The exception is when the CEF can be saturated.

The simplest example has a single binary regressor X ∈ {0, 1}. Then

E(Y |X) = β1X + β0 (1 − X) = β0 + (β1 − β0)X

for β0 = P(Y = 1|X = 0) and β1 = P(Y = 1|X = 1).

This can be generalized when all regressors take on a small number of
possible values, but the number of parameters to estimate grows very
quickly.
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A parsimonious parametrization for binary choice that restricts the
CEF to the unit-interval is

P(Y = 1|X) = G(φ(X, β))

for a chosen function φ and CDF G.

In practice the most popular choice for φ(x, β) is x′β, in which case we
get

P(Y = 1|X) = G(X ′β);

the logit model and the probit model are the most popular versions of
this specification.

They differ only in the choice of G.
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Estimation

We have previously shown that NLLS can be used to estimate the
parameters in binary-choice models.

Also know that NLLS is not the optimal choice.

The optimal choice is maximum likelihood.

Maximum likelihood is a general technique that we introduce through
this example.
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The likelihood function

Suppose that we observe a random sample (Y1, X1), . . . , (Yn, Xn).

The sequence Y1, . . . , Yn is a sequence of zeros and ones.

Conditional on X1, . . . , Xn the probability of observing this particular
sequence is

n∏
i=1

P(Yi = 1|Xi){Yi=1} (1 − P(Yi = 1|Xi)){Yi=0}.

With our model for the conditional probability this becomes

Ln(β) =
n∏

i=1
G(X ′

iβ){Yi=1} (1 − G(X ′
iβ)){Yi=0}.
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For any b, Ln(b) given the probability of observing the sample in front
of us if the data were generated with P(Y = 1|X) = G(X ′b). This is
the likelihood function.

We estimate β by maximizing this probability.

The MLE of β is β̂mle. Thus,

Ln(β̂mle) ≥ Ln(b)

for any b.
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Log-likelihood and optimization

It is usually easier to work with

ℓn(b) = log Ln(b) =
n∑

i=1
Yi log G(X ′

ib) + (1 − Yi) log(1 − G(X ′
ib)).

This is the log-likelihood function.

In regular situations, β̂mle solves the first-order condition

∂ℓn(b)
∂b

= 0.

Here,

∂ℓn(b)
∂b

=
n∑

i=1
YiXi

g(X ′
ib)

G(X ′
ib) − (1 − Yi)

g(X ′
ib)

1 − G(X ′
ib)

=
n∑

i=1
Xi

g(X ′
ib)

G(X ′
ib) (1 − G(X ′

ib)) (Yi − G(X ′
ib)).
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Average marginal effects

The parameter β may not be the ultimate object of interest.

In our model (for continuous X)

∂P(Y = 1|X)
∂X

= βg(X ′β),

and we may be interested in such things as

θ = E
(

∂P(Y = 1|X)
∂X

)
= E (β g(X ′β)) .

(This is not the same as β g(E(X ′)β), which is not very interesting.)

An estimator of θ is

θ̂ = 1
n

n∑
i=1

β̂mle g(X ′
iβ̂mle).
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